In- and out-of-equilibrium ab initio theory of electrons and phonons

16 Ottobre 2023@14:00–15:00 Europe/Rome Fuso orario

Speakers: Gianluca Stefanucci (ROMA2)

We lay down the ab initio many-body quantum theory of electrons and phonons in equilibrium as well as in steady-state or time-varying settings. The focus is on the harmonic approximation, but the developed tools can readily incorporate anharmonic effects. We begin by showing the necessity of determining the ab initio Hamiltonian in a self-consistent manner to ensure the existence of an equilibrium state. We then identify the correct partitioning into a “noninteracting” and an “interacting” part to carry out diagrammatic expansions in terms of dressed propagators and screened interactions. The final outcome is the finite-temperature nonequilibrium extension of the Hedin equations, showcasing the emergence of the coupling between electrons and coherent phonons through the time-local Ehrenfest diagram. The Hedin equations have limited practical utility for real-time simulations of systems driven out of equilibrium by external fields. We then derive the Kadanoff-Baym equations for electrons and phonons, discuss the theory of conserving approximations and show how to recover the Born-Oppenheimer approximation. We conclude by pointing out a possible correlation-induced splitting of the phonon dispersion in materials with no time-reversal invariance.